Models#
Prediction#
sklearn: lr, rf, knn, xgb, tabnet, tabpfn, mlp-sklearn
lightning: mlp, ft-transformer
Generation#
real (passthrough)
imblearn: smote
tabeval: ctgan, tvae, bn, goggle, tabddpm, arf, nflow, great
Selecting parameters#
Each model class defines default, single-run, test, and Optuna search spaces via
define_params
.Lightning models further have
architecture
andoptimization
subsections.
Caveats#
Some generators are unstable on large datasets (see
unstable_generator_list
insrc/tabstruct/common/__init__.py
).Regression requires random splits; stratified is classification-only.