Models#

Prediction#

  • sklearn: lr, rf, knn, xgb, tabnet, tabpfn, mlp-sklearn

  • lightning: mlp, ft-transformer

Generation#

  • real (passthrough)

  • imblearn: smote

  • tabeval: ctgan, tvae, bn, goggle, tabddpm, arf, nflow, great

Selecting parameters#

  • Each model class defines default, single-run, test, and Optuna search spaces via define_params.

  • Lightning models further have architecture and optimization subsections.

Caveats#

  • Some generators are unstable on large datasets (see unstable_generator_list in src/tabstruct/common/__init__.py).

  • Regression requires random splits; stratified is classification-only.